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WING-TATT. COMBINATIONS PERFORMING TIME-DEFENDENT
MOTIONS AT SUPERSONIC SPEEDS

By John C. Martin, Margaret S. Dliederich,
and Percy J. Bobbitt

SUMMARY

A theoreticael investigation is presented of the contribution of
horizontal tails to the 1lift and pitching moment due to angle of attack,
a constant rate of pitch, and a constant vertical acceleration. Numer-
ical values of the aerodynamic coefficients associated with these motions
are presented for a number of two-dimensional wing-tail combinations, a
triangular wing-tail combination, and & number of rectangular-wing--
triangular-tail combinations.

Methods for calculating the flow fields behind wings with constant
vertical acceleration are developed. Calculated results are presented
for the upwash behind two-dimensional wings and for certain regions
behind triengular and rectanguler wings for a constant rate of pitch and
for constant vertical acdcelerations. A method of treating unsteady aero-
dynamics based on an infinite series of stabllity derivatives of succes-
sively higher order is also presented.

INTRODUCTION ,

The development of the linearized theory of supersonic flow has
permitted a first-order evaluation of a number of stebility derivatives
for a wide variety of isoclated wings. (For example, see refs. 1 to 9.)
The linearized theory may also be used in the calculation of 'the aero-
dynemic derivatives of the wing-tail combinstions. Considerations of
the effects of the horizontal tails located behind wings of necessity
entail a knowledge of the upwash induced by the wing. The upwash
from wings performing steady motions can be calculated by use of the
various methods presented in references 10 to 15. A method of calcu-
lating the upwash in the region of the viscous wake behind wings with
a constant vertical acceleration at supersonic speeds is presented in
reference 16. Except for the methods and results presented in refer-
ences 16 to 19, little consideration has been given to the theoretical

calculation of the contribution of the horizontal tail to the aerodynamic
derivatives.
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The primary object of the present paper is a theoretical Investi-
gation of the contribution of the horizontal tail fo the pitching moment
due to a constant vertical acceleration. An investigation of this
pitching moment entails a knowledge of a number of other factors which
in themselves are useful in other supersonic flow problems. Inasmuch as
a knowledge of these other factors is required in the primary investi-
gation, the present paper has a number of secondary objectives such as:
(1) the establishment of a method of treating unsteady aerodynemics of
aircraft by the use of an infinite series of stability derivatives of
successively higher order, (2) the development of theoretical methods
for the calculations of sidewash and upwash behind wings which have
local angle-of-attack distributions which very linearly with time,

(3) an investigation of exact and approximate methods for the calcula-
tion of sidewash and upwash behind wings with constant vertical accel-
eration, and (4) an investigation of exact and approximate methods for
the calculations of the 1ift and pitching moment due to a constant angle
of attack and a constant rate of pitch.

The upwash behind two-dimensional wings with a constant vertical
acceleration is determined and calculated results are presented. The
upwash along the center line of the wake behind triangular wings with
subsonic leading edges is determined for a constant rate of pitch and
for a constant vertical acceleration; calculated results are presented
for a number of triangular wings and Mach numbers. The upwash in the
wake in the plane of the wing behind rectanguler wings is determined for
a constant vertical acceleration; calculated results are presented for a
number of rectangular wings and Mach numbers.

Exact linearized results are presented for the 1ift and pitching
moment resulting from angle of attack, steady pitching, and a constant
vertical acceleration for a number of two-dimensional wing-teil combina-~
tions, a triangular wing-tail combination, and a number of rectangulsr-
wing—triangular-tail combinations. Some of these exact results are
compared with results calculated from a number of simple approximate
relations which are often used in calculations for subsonic wing-tail
combinations.

SYMBOLS

A aspect ratio

a velocity of sound in free stream.

_B=VM‘2-1

b wing span
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cL, 1ift coefficient, lﬂﬁ’—
5 pVESy
_ %
Oat a—>0.
_ oCy,
Cre S
2vlg—0
BCL
C e =
& 3 882
Lve|g-—0
ACI’Q, horizontal-tail contribution to CLc},
AT, horizontal-tail contribution to ch‘L
BCL
Cr = —=
Iy S @
2V |g—>0
con - oCy,
La 3 §s2
12|80
oC
Croee = L .
RN i}
8v3 |a—0
ACLq horizontal-taiX contribution to CLq
Cn pitching-moment coefficiént, EHEEEEE:—
5 0V25w“—w
oCp
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y de_
4v2 & —>0

horizontal-tail contribution to Cma

horizontal-tail contribution to Cm&

g P

9Cp
Cmgy N
2V|q—>0
oCp
Crme =
.l
4 gac A
42 [g—0
dc, ’
Cng = —
d &
8V |§—0
ACmq horizontal~tail contribution to qu
Cp pressure coefficient, E%$§%§§E
> p
c root chord
c mean serodynamic chord
d arbitrary distance along x-axis assoclated with a shift in
center-of-gravity location (see table I)
dq distance from apex of a triangular wing to axis of pitch

ds differential area
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hy, by

complete elliptic integral of second kind with modulus k,

1 2
Jf 1 - kzx .
o {1-

complete elliptic integrael of second kind with modulus k!

. force

% times force associated with first term of equation (1)

?¥ times force associated with second term of equation (1)

ac

2
EXE times force associated with third term of equation (1)
e

Eg times force associated with first term of equation (2)

qc

B2 . :

—> imes force associated with second term of equation (2)
qe

)
§¥3 times force associated with third term of equation (2)
dc

arbitrary function associated with local angle-of-attack dis-
tribution on a wing (see eq. (1ka))

finite part of an integral

function associated with Mach surface formed by envelope of
after Mach cones springing from trailing edge of wing

arbitrary function associated with local angle of attack of
an airfoil (see eq. (D1))

limits of integration (see eq. (21))

function associated with equation of trailing edge of wing
(see eq. (20))
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K complete elliptic integral of first kind with modulus Xk,

fl an
0 \R:L -22)(1 - ¥2)

K. = a
a- 2
x 1 - 2B%w? E'(Bm) + _B_am__Kr(Bm)
1 - B%m? 1 - B°m®
K! complete elliptic integral of first kind with modulus k'
k variable of integration
. = Bmxl
1= ——
X —Xl
X —Xl
k2 - Bmx
1
X -cC
ke =
5 Bme
Bme
K= x—e
R Y
1 distance from center of gravity to centroid of area of tail
M free-stream Mach number, %
Mg surface formed by envelope of after Mach cones springing from
trailing edge of wing
M moment
Mb o times moment associated with first term of equation (1)
= 2V
Mi —— times moment associated with second term of equation (1)

acC
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|
\Q

= éﬁé

F

uv?-

G,C

times moment associated with third term of equation (1)
2V

gc

uv2

qc

times moment associated with first term of equation (2)

times moment associated with second term of equation (2)

5
§z§ times moment associated with third term of equation (2)

tangent of semivertex angle of triangular wing

cotangent of trailing-edge sweep angle of wing

local static pressure minus free-stream static pressure

rate of pitch

B2(¥2 + 29
area of alrfoll surface
time

arbitrary instant of time

08
discontinuity in g-g which is induced within plen-form
X

boundaries by discontinuity in 65 across region of wake

free-stream velocity

velocity of vertical translation
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X=X—Xl

Y=y"y1

X, ¥, 2 rectangular coordinates

X1 Y1 auxiliary rectangular coordinates

x distance from leading edge of wing to center of gravity meas-
ured in streamwise direction

z distance between plane of wing and plane of tail

a angle of attack, angle between body axes and free-stream
direction at the center of gravity (see fig. 25(b))

Q= %Q; the motion of center of gravity associated with this term corre-

t sponds to a constant vertical acceleration and is sometimes

referred to as a plunging motion

5o O

dt2

T spanwise circulation for an airfoil which has a spanwise
circulation equal to Q(x,y) at wing trailing edge

e component of potential function resulting from constant
vertical acceleration

8y, 9o components of ©

8q potential function due to constant rate of pitch

eé potential function due to constant rate of pitch about the

_ B®Vt,
axis x =
M2

d Oq d 6q

=— — average value of — —=— at horizontal-tail location

0z qcy oz qc,

A varieble of integration

varigble of integration
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P mass density of alr
g local angle-of-attack distribution
. ao’
g = =

t
015 Op components of effective angle of attack on a tell which are

associated with constant vertical acceleration
52 average value of 0p at horizontal-tail location
) potential function
¢g potential function associated with first term of equation (1)
ﬁ; potential function associated with second term of equation (1)
¢g potential function associated with third term of equation (1)
¢g potential function associated with first term of equation (2)
¢% potential function associated with second term of equation (2)
¢g potential function associated with third term of equation (2)
¥, components of potential function resulting from constant
vertical acceleration (see eq. (9))

Qp part of function O associated with induced effect on wing
Qo part of function § assoclated with wake
Sy, potential function associated with constant angle of attack
jl_gg average value of jllgl at horizontal-tall location
oz aV oz aV
Subscripts:
IE leading edge of airfoil
t tail
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TE trailing edge of airfoil
W wing

Expressions such as cIuIt and Cmq|t refer to the stability

derivatives of a tail surface considered as an isolated wing. Such
expressions as Q(0") mean that the value of Q 1is obtained by
approaching zero from a positive direction.

STATEMENT OF THE PROBLEM

This paper contains an investigation of the contribution of the
horizontal tail to the 1ift and pitching moment produced by a constant
angle of attack, a constant rate of pitch, and a constant vertical
acceleration. Unfortunately, the need for finding the force and moment
associated with a constant vertical acceleration is not always recognized.
In order to clarify the reasons for investigating this force and moment,
an approach to the more general problem of calculating the effect of
unsteady motions on the forces and moments on an alircraft undergoing a
certain type of longitudinel motion is presented.

Throughout the text the vertical velocity produced behind wings with
a constant vertical acceleration at an angle of attack or in a pitching
motion will be referred to as upwash. Negative upwash is, of course,
commonly referred to as downwash.

Consider the problem of finding the force and moment acting on the
wing and horizontal tall of an aircraft undergoing longitudinal motions
in which the forward velocity is constant. The forece and moment are
determined not only by the instantaneous velocities but also by their
past values. The approach to the problem of calculating the effect of
unsteady longitudinal motions presented in this paper tekes into account
the time history of the velocities as well asg their instantsneous values.

For many stability studies, the aircraft can be considered a rigid
body and if the changes in the forward velocity are neglected, its longi-
tudinal motion can be broken down into two components: (1) the vertical
translation of the center of gravity and (2) the rotation of the center
of gravity.

The velocity of the vertical translation w and the velocity of
rotation q of the center of gravity may be expressed as a power series
in time about some arbitrary instant of time t,. These two power series



NACA TN 3072 11

and

2
_I_(’G-to) %

+ e . (2)
2. t=t,

a(t) = q _— + (t - to)q b=t

If it 1s assumed that the forces and moments can be calculated with
sufficient accuracy by the linearized theory of supersonic flow, the
following partial differential equation must be satisfied in the flow
field:

2 2V 1
B¢}D{_¢y'y-¢zz+;§¢xt+;§¢tt=o (3)

Since the preceding differential equation is linear, the flow associated
with each term of equations (1) and (2) can be considered separately,
and the total force and moment may then be found by summing the results
from the individual terms.

The boundary conditions associated with each of the first three
terms of equations (1) and (2) are: The potential function associated
with each term is zero upstream of the wing disturbance. On the wing and
tall surfaces, the flow must be tangent to the surfaces; thus,

3, e
— —Qo =y -
oz v oz =
3 X3 .
Sz_l = &Vt - to) S = -ax(t - to)
a
35252:_@1 (t"to)a %:-q_x (t-to)2

S;_ 2! oz 2!
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In the region of the wake of the wing upstream of any disturbance from
the tail surface, the pressure must be zero; thus, in the region of the
wake

a q
%+.];ai’g_=o % J:%:O
ox V ot ox V ot

q q
ox V ot ox V ot

q q
o 1%, M M
dx Vot dx Vot

Solutions of equation (3) which satisfy the boundary conditions set
forth in the preceding paragraph allow the calculation of the force and
moment associated with each term of equations (1) and (2). The total
force and moment cen be written as

- 2\2
_ ; < Sl (S
F=oa t=t F% S P 57 Fi(t) S T (ZV) Fz(t) + o 0 . F
(e) (o] (¢]
- -\2 -3
c 4. = c\a s (c ) Q
L g = — . ..
qlt:to v 0" 4 t=to<2v) Fp(t) + qlt—-to 5v) Fo(t) +

2
i
ct+
o]
ol
]
i'&
4
+
.Q.
i
ct
(o]
P
Yo
S
n
oA
plls
&
+
_a:
T'.
ct
P
gtv
S’
N
~~
&
+
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The F and M expressions in the preceding equations are functions
of time snd are not zero when t = ty. The force and moment at t = tg
can be written in coefficient form as

- =3\2
= 3 i . a -c— L1 d * . .
Cr, = oty Oy * &=t 57 Org ¢ “"Of-to(ev) Crg * *

- -\2 -
Uity 7 T * E-‘-lt%(‘fﬁ) Crg * a‘uto('ac?) Cigt e O
. G . : V2
Cp = mltzto Cg, + “lt=to'§§ Oy, + m‘t=to(§V) Cm& F e e oo F
oty B o * EoceeB) Oy Al Ot O

The coefficients Cﬁx’ CL&’ Cmu’ Cm&: CLq’ and Cmq are the standard

atability derivatives. The remaining quentities can be considered as
stability derivatives which take into account the unsteady-flow effects
other than the & effect.

The seriee given by equations (%) and (5) are assumed to converge;
however, in subsonic flow there is some evidence that the series may not
converge for two-dimensional airfoils. TIn sBupersonic flow, the force
and moment (calculsted on the basis of linearized flow theory) depend
only on the flow field between the leading edge of the wing and the
trailing edge of the tail. Since only & small portion of the flow field
is involved for supersonic flows, 1t is expected thet these series will
converge.

In the present paper, it is assumed that the force and moment can
be spproximated gufficiently accurately by

Cy, = acla > CI& * 5 CIq' (6)
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and
Ca = oy, + 2 Cpe + £ O (7)

The problem to be considered is the evaluation of the contribution of the
horizontal tail to the derivatives contained in equations (6) and (7).

CAICULATION OF FIOW FIELDS OF ATRFOILS HAVING LINEAR
ANGLE-OF-ATTACK VARTATTIONS WITH TIME

Basic Theory

In the preceding section the aerodynamic 1ifting force and pitching
moment were expressed as an infinite series of stability derlvatives.
The first stability derivatives of the series which are associated with
unsteady flows were shown to be associated with the 1lift and moment
resulting from a constant vertical acceleration. In this section methods
are presented for the calculation of the flow fields produced by wings
with a constant vertical acceleration and the potential function on the
surface of tails which are located behind these wings.

In order to calculate the flow field produced by a wing which has a
constant vertical acceleration and the potential function on a horizontal
tail behind the wing, the solution of two unsteady-flow problems will be
utilized. The first problem is the calculation of the upwash induced
by the wing at a constant vertical acceleration, and the second is the
calculation of the pressure on an alrfoil which hes a local angle-of -
attack distribution which varies linearly with time. These two problems
are special cases of the more general problem of calculating the flow
induced by an airfoil which has an arbitrary angle-of-attack distribution
which varies linearly with time. This general problem is formlated and
the solutions to the other problems are taken from it. The effects of
the rolling up of the wake and other distortions are neglected and the
wake is assumed t0 remain in the plane of the wing.

The linearized partial differential equation (eq. (3)) for unsteady
supersonic flow is

2 2V 1
By - ¢yy - Pop + 22 Pyt + 22 Prg = O

where the x-axis lies along the free-stream direction. The potential for
a zero-thickness lifting alrfoil is antisymmetric with respect to the
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plane of the wing (z = O plane). It is therefore necessary only to
determine the potential above the plane for 2z = 0. This potential can
be determined by specifying the boundary conditions in the plane of the
wing and the potential upstream of the airfoil disturbance. The boundary
end initial conditions for the potential for the region above an airfoil
which has a local angle of attack varying linearly with time may be given
as

¢ =0 (8&)
upstream of the wing disturbance,
g, = -ave(x,y) (t - to) (8b)
on the plan form, and
P=-p(Vhy + f¢) = O (8c)

for z = 0 (the plane of the wing) off the plan form. The condition

given by equation (8c) is necessary to insure that there is no pres-
sure discontinuity across the wake.

From the preceding boundary condition, it follows that

V¢X(X;Y:0:t) + ¢t(xyy’o;t) = 0

off the plan form. The general integral of this partial differential
equation is any arbitrary function of y and x - Vt. The potential
is assumed to be continuous in the stream direction, and the potential
has been taken to be zero upstream of the wing disturbance; thus, the
function must be zero for points not on the plan form or in the region
of the wake., The boundary conditions can now be written as

¢(X:Y;Z:t) =0
upstream of the wing disturbance,
¢(XJY)O:t) =0

for z = 0 for polnts not on the plan form nor in the region of the
wake,

¢z(x:y:0:t) = 'an(x)Y)(t - to)

for z = 0 for points on the plan form, and
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Vi, + Py =

for z = 0 for points in the region of the wake.

A solution of equation (3) can be found by assuming a function of
the form

P = o(x,y,z) + x¥(x,y,z) + ta(x,y,2) (9)

This assumption appears reasonable since the boundary conditions are
linear functions of time and equation (3) has the same form if x
and % are interchanged.

Substituting equation (9) into equation (3) and equating powers
of t yields

2
By = Uy = Q55 =0 (10e)
20, + 282U, + Bl - Oy - Wy - 0y, - XU, + E 0y = 0 (10b)
a

If ¥ 1is set equal to -

v Q, equation (10b) reduces to
B a2

Beem{"eyy"ezz“];é—g(B%c{ 9'yy’ﬂzz)=0 (11)

Substituting equation (10a) into equation (11) yields

B20,, - O,y - 8,, = O (12)

vy ZZ

Thus, under the assumption that

Y=-—t_ @

B%a?

equation (9) may be written as

¢ = 8(x,y,2) + (t - %)Q(x:yyz) (13)
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where 6 and QQ are solutions of the partial differential equation for
steady supersonic flow. Note that € does not have the dimensions of
a potential of steady flow. Equation (13) was found by Clifford S.
Gardner of New York University in an unpublished analysis using another
approach and was used by Ribner in reference 16.

The boundary conditions require that

g, =0, + (t - ?é;)ﬂz = -oVP(x,y) (%t - to)

on the plan form or, 1f the powers of t are equated,

Q, = -0V (x,y) (1ke)
and
xM
8, - - Q, = 6Vt £ (x,y) (14D)

Substituting equation (14a) into equation (14b) ylelds

i

6, = (Vto - B—2—>6f(x,y) (1k4c)

The boundary conditions also require that
8 =0 (158)
Q=0 (15D)

for all points elther upstream of the wing disturbance or in the plane
z = 0 which are not on the plan form or in the region of the wake and
that

Voy + (V't - —-—)ax -8 -0 (16)
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for points in the region of the wake. When the powers of t are
equated, equation (16) yields

Q=0 (172)
Vo, - —= =0 (17p)

Equations (14a), (15b), and (17a) are the boundary conditions for
a potential Q for an airfoil which has a local angle of attack equal
to & f£(x,y) in steady flow. Thus, since  setisfies the linearized
partial differential equation for steady flow, it can be determined by
the methods commonly used for obtaining steady-state solutions in super-
sonic flow.

Similarly, equations (l4c) and (15a) are the boundary conditions
for the potential © for an airfoil which has a local angle of attack

equal to -<Vto - xg g fgf’y). Also, because 6 satisfies the line-
B

arized partial differential equation for steady flow, in the region

unaffected by the weke it can be found by the methods used in steady-

flow calculations. However, inasmuch as the boundary condition of equa-

tion (17b) replaces the condition that in the region of the wake 04 = O,

which is implied in these methods, another spproach must be used to
obtain solutions in the region affected by the wake.

A convenient approach is to divide 6 into two parts: © = 07 + 6o
where 607 1s the steady-flow solution for the given airfoil in the
08
ordinary sense, that is, subject to the condition that S—l== 0 1in the
e

region of the wake. It follows that 6, must satisfy the following
boundary conditions:

6o(x,y,2) = 0 (18e)
upstream of the wake influence,
00,(x,¥y,2)
_2rIT g (18b)
dz

on the wing plan form,
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SQ(X,Y: 0) =0 (18c)

for points not on the wing plan form nor in the region of the wake, and

aeQ(X:y) 0) _ 1
Ox B2y

a(x,y,0) (18a)

for points in the region of the wake.

The solution for 8s(x,y,z) can be obtained in several ways. Two

08
approaches are presented here. Both methods require that g—g be Xnown
X
. 08
in the plane of the airfoil. The discontinuity in —=2 is zero every-

ox

where except in the reglon of the viscous wake, and except (for the case
of wings with subsonic trailing edges) in the region of the wing affected

by the wake, where a discontinuity in g;g is induced by virtue of the
conditions expressed in equations (18b), (18c), and (18d). The value of
the discontinulty in ggg for points in the region of the viscous wake
cen be determined from equation (184). In meny cases, the discontinuity

00
in S—g induced on the plan form can be found by using the method devel-
X

oped in reference (20) for the pressure cancellation for subsonic trailing
edges.

The first of the methods to be presented deals directly with the
1]
discontinuity in 5—2 in the 2z = 0 plane., If éégg is assumed to be
x ox

known in the plane of the wing, then 6, is given by (from eq. (6),
ref. 15)

A (x 0)X
62(x,y,2) = _%ﬂ (2l’yl; ) dxy dy; +
ox2y M Wake (Y2 + z2)R

_]__I[ ZAlerdx 1
21 JJwing (Y2 + 22)R T V1 (29)
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08

where Au,. 1is the discontinuity of S_g across the z = O plane induced
X

within the plan-form boundaries by the discontinuity of 65, across the

wake and where AQ 1is the known discontinuity in Q across the plane
z = 0. Note that for wings with supersonic trailing edges Au,. 1is zero.

Since Q 1is the potential for an airfoil in steady flow, and since
the potential discontinuity in the region of the wake for an airfoil in
steady flow is constant in the x-direction, it follows that AQ is
constant in the x-direction. In other words, AQ(x,y,0) is a function
of y only and may be written as AQ(y).

If the equation of the trailing edge is given by
x1 = J(y1) (20)

equation (19) can be written as

ho AﬂCyl) x—BJi

S (X:YJZ) = z f > 5 dyq d-x +
° exByJpy Y2 + 2 I(y1) R
Z M X
dx; dy (21)
2“‘17;138 (2 + 22)R !

The limits on the outer integral af the first term of the right-hand
side of equation (21) are teken across the span of the wing or to the
limits of the forward Mach cone from the point (X,y,z). The first term
on the right-hand side of equation (21) can be integrated with respect
to xy. The result of this operation is

z b2 Aa(yy) 2 2
05(x,y,z) = 2:1B2Vf R \,( - B (Y2 + z )dyl +
L f o ax ay (22)



NACA TN 3072 21

The second method of calculating 6o is similar to the approach

08
used by Ribner in reference 16. By this method an expression for S_g
X
is given and 6o 1s then found by integration.

aeQ(X)y’ Z)
The boundary conditions for ————— for wings with supersonic
X
trailing edges are
aeg(x’y;z)

ox
upstream of the wake influence,
BBQ(X:Y)O) _
ox

for points not in the region of the wake, and

d0o(x,y,0) 1
2 272 = 2 Q(x)y,o)
ox BEY

for points in the region of the wake. These boundary conditions are
the same as the boundary conditions for the potential of a lifting line
located at the trailing edge of the airfoil. The strength of this

1
lifting line is —
B4V
airfoil which has a spanwise circulation equal to the value of Q(x,y,z)
at the wing trailing edge. Thus,

I' where I' is the spanwise circulation for an

BGQ(X:Y:Z) - 1
ox B2V

Qw(x:yyz)

where Q,(x,y,2z) is the part of Q(x,y,z) which results from the dis-
continuity of Q(x,y,z) +through the region of the wake. The function
0, (x,y,2) 1s also the potential resulting from a lifting line which has

8 circulation of the amount I' and 1s located at the trailing edge. It
follows that

GQ(X:Y:Z) = g%;L/;: Qw(ny)Z) dA (23)

e e e - e e ——— —_— e
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where the lower limit is taken from the trailing-edge Mach surface Mg.

(The expression "trailing-edge Mach surface" refers to the surface formed
by the envelope of the after Mach cones springing from the trailing edge.)

The solution for 65(x,y,z) associated with wings which have sub-

sonlc trailing edges must include the effect of the potential induced on
the plan-form area because of the condition that

362.(}{;}') 0) -0
Jz -

on the wing plan form. Thus, if Qp denotes the effect of this induced
potential for wings with subsonic trailing edges,

X
92(x:y,~z) = B_;Vst I:QP()\;Y,Z) + Qw()\:Y)ZZId)\ (21")

Two methods of finding the function ee(x,y,z) have been presented,
the expressions for 6o being given by equation (22) and equation (24).
The function 92(x,y,z) can also be obtained by other approaches, one

of which will be utilized in an example which is presented at the end of
this section.

In appendix A, equation (22) is differentiated and the following
equations are obtained:

2
ho  AQ(y;) -‘2—(:—'—%— + B2|Y
98,(x,y,2) g Y + z iy
- —E 3
v 2BV foy (2 + 22)(x - 92 - 32(x2 + 22)
X
z O 2 ax ayy (25)

2x 3; Wing (Y2 + 22)R
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00x(x,y,2) _ 1 L/“hz 20(y1) Y2J(x - 02 - p2(x2 + 22) -

dz axB2VVny  (y2 , ,2)°

22(x - J)2 z X Au,
dy, + — = —— dx; dy;
V(x - 02 - B3(¥2 + 22) ax aZL[/;Iing (v + 22)R

(26)

The differentiation of the double integrals of Au, was indicated only

in the preceding equations, the reason being that the expressions
resulting from the differentiation under the integral sign appear to be
of little value in numerical calculations. For wings with supersonic
trailing edges, Au, 1is zero. Thus, the double integrals vanish. For
most problems where the wing has subsonic tralling edges, the sidewash
and upwash contributed by the double integrals in the usual tail loca-
tion could be approximated by the sidewash and upwash from a 1lifting
line in the vicinity of the trailing edge. This lifting line should

1
have a strength equal to —— (A@») where (A@o) is the potential
B2V P2) 2/TE

induced at the trailing edge by the discontinuity in 8o 1n the region
of the wake,

362

In appendix A the followlng expressions are developed for 3—— and
¥y
ggg for wings with supersonic trailing edges:
Z
00, (x,y,2) x 30, (A\;¥,2) 3G
O\AsJ) s _ _‘é_f S (A5 d.)\""]a‘-"ﬂw(ns) (y,z) (27)
oy B2V Y a(y, 2) dy BV dy
aeE(X)y':Z) 1 fx aﬂwo\;%z) 1 BG(y Z)
= —_——— dA\ - i 28
dz BV oy, 2) oz BV 0y (M) oz (28)
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Ofy Oy
where —— and —— are the sidewash and upwash from a 1lifting line

oy oz
with a strength equal to I' and located at the tralling edge of the
wing. For subsonic trailing edges,

ae ERAE X a )\ )z) X a )\,
o(x,y,2) ] ; f oAy ax e _32__V_f %Ny, 2) . (29)
dy BV Y M, Sy BV UM, oy
and
o0 s X 3a, (A X
o(%,¥,2) _ \jp Qp( s¥52) an o+ _;_L/“ o (N,y,2) a (30)
dz B2V U Oz B2V UM oz
o0p o0y
where S—— and 5—— are the sidewash and upwash resulting from the
Yy b4

potential induced on the plan form by the discontinuity of Q through
the wake.

The total potential (from eq. (13)) in the region affected by the
wake 1s, therefore,

B(x,7,2,%) = 01(x,7,2) + Bp(x,¥,2) + a(t _ )"(x’?’z) (31)
B2g, g

The sidewash and the upwash are therefore given by

907 36y . M \d g
= — } —& <L S RS 1} o
¢y ay " ay * U( Bea)By o (3 )
and
99; 38, . wm \d q
% = ——-az + -——az + 0'< - _]32&)_82 '.; (33)

The upwash on the plan form of a wing undergolng constant vertical
acceleration is given by
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@, = <V(t - to) (z = 0)
Tor axes attached to the wing. Therefore, for this motion,

T(x,y) =1

and

0=0q

The potential 6q(x,y,z) is the steady-flow potential for an airfoil

which has an angle-of-attack distribution equal to - 2{Vt. - zl'-ftzi— £(x,y)
v [0}

B2
; 00
or -2 Vty - _x._ME and for which —L = 0 1in the wake, Since a wing
A :82 Bx
having a constant rate of pitch about an axis located at x = x5 has an
X - X
angle-of-attack distribution equal to i(—-—v——“ﬁ,
el(x)y’z) = "M‘zg"' CH
qB? 4

where e('1 is the steady-state potential due to a wing pitching about an

BV,
axis located at x = .
M2
Q(X:YJZ)
The potential ———— 1is the steady-flow potential resulting from

o
a wing having an angle of attack equal to f(x,y) or in this case unity.
If @, 1is the potential due to a wing having a constant angle of attack a,

Q(X)Y;Z) = % O,

The function 6o 1s given by equation (22) or equation (24).
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Therefore, the sidewash and upwash are given by

e 08
_ipl=f_a__‘_1_ V(t_to)_f_’if’__ﬂﬁ+;__£ (34)
&c B2 dy aqc c B2c |9y aV  ac Oy
and
¢z Mza q A szaﬂa 1892

Pz _M 0 % |Viy ) Mx|0w, 1 2 (35)

where 6q 1s the potential for the wing pitching about the axis x = O.
Equation (35) is used to calculate the upwash from a number of wings.

Upwash at the Trailing Edge

For wings with supersonic trailing edges, the upwash immediately
behind the trailing edge is given by

fr 1 2 IR LU -@_i(%)TE+ L (ae'c‘) (56)
TE

&c B2 dz\qc BZc |9z \aV ae \9z

The first two terms of this expression may be evaluated by the method
of calculating the steady-flow upwash immediately behind the trailing

06
edge (refs. 10, 11, and 15). The term (S—g) is (from appendix A)
2 /TE

C 1 oG (y,2z)
the expression ""E; Q,(Mg) ——S—i—— evaluated in the plane for z = O
B Z

at the trailing edge of the wing.

Approximate Values of ¢y and @,

An approximation to the sidewash and upwash can be obtained by
neglecting the terms which become constant for large values of x in
equations (34) and (35). This epproximation leads to the following
expressions:
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$ . |¥ x|d %
o B (t - to) - 9JS§';V (372)
o (¥ (5 -4y - 2|2 % (370)
& |c °© c|dz aV

Equations (37) may also be obtained by assuming that the 1lift on the wing
bullds up instantaneously and that the upwash at a relatively large dis-
tance behind the wing 1s determined by steady-flow values of the 1ift
distribution on the wing. It 1s not assumed, however, that the upwash

at the tail location at a given instant corresponds to the 1ift distri-
bution on the wing at the same instant. The assumption is made that
there is a time lag between the 1lift distribution on the wing and the
upwaesh induced by this 1ift distribution at the tail location. This time
lag is the time required for & point moving with the free-stream velocity
to travel from the wing location to the tail location. In the past it
has been found that, by using the stability derivative Cm& calculated

on the preceding assumptions, the airplane motions could generally be
predicted with satisfactory accuracy (ref. 21). This accuracy seems to
indicate that values of upwash from a wing having a constant vertical
acceleration in subsonic flow, calculated on the basis of the preceding
assumptions, are a good approximation to the exact values.

The question naturally arises as to whether the simple assumptions
of  instantaneous 1lift build-up and time-lag effect give a good approxi-
mation to the upwash from a wing which has a constant vertical accel-
eration at supersonic speeds. This question is investigated for a number
of cases.

The values given by equations (37) are dependent upon the position
of the origin of the x-axis. Since equations (37) represent a time-lag
effect in the flow field, 1t seems logical that the origin of the x-axis
should be located near the centroid' of the wing area for wings with small
amounts of sweep. For highly swept wings it seems logical to allow the
origin of the x-axls to vary along the span so that the distance x in
equations (37) represents the distance from the point under consideration
to the center of the section of the wing which lles directly upstream of
the point under consideration.

An approximate method of calculating the upwash behind wings with
a constant acceleration which is more accurate than equation (37b) is as
follows: Calculate the angle-of-attack and pitching components approxi-
mately by the use of 1ifting lines. (See refs. 13 and 15.) .The compo-

00
nent g—g can be calculated exactly for wings with supersonic trailing
z
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edges and approximately for wings with subsonic trailing edges by neg-
lecting the integral over the wing in equation (26). This method should
yleld results which are accurate to a fairly high degree except near the
trailing edge or the Mach surface which springs from it since the main
approximation is the calculation of the angle-of-attack and the pitching
components by the use of lifting lines.

The Two-Dimensional Airfoil

One of the simplest time-dependent upwash problems is the two-
dimensional airfoil which has a constant vertical acceleration.

For the region which is not affected by the wake, 6, 1is zero, and
by inspection
06q

=2 - ~q(x - 72)

0
The component _82 is

oz

¢z Mz v
==z 2= (-1t (38)
d6g 00y,
From the region affected by the wake, and S_— are zero and
Z Z
equation (35) yields
08
fa_ L 2% (39)
ac ac oz
From equation (28),
06
2 - __2;.Qw(mé) 96(y,z) (40}

dz B2y dz
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.When the y-axis 1s located along the leading edge of the wing (from
eq. (A9) of appendix A),

G(y,z) = c + Bz (41)

Since the potential function on the upper surface of a two-dimensional

alrfoll at a constant angle of attack is E%E where x 1is measured

from the leading edge, «,(Mg) is given by

Qs

0, (05) = £2 (42)

|

Thus, the upwash in the region affected by the wake is found to be given
by

2o (x3)

P

Values of — at t =1

o &re plotted for various values of z in
ac

figure 1.

An examination of equation (37b) and figure 1 reveals that the
approximation given by equation (37b) breaks down for the upwash behind
a two-dimensional ailrfoil.

The Triangular Wing

The upwash along the center line of the wake is determined for a
triangular wing with subsonic leading edges. Equation (35) indicates
that the upwash induced by a wing with a constant vertical acceleration

is made up of three components. One of these three components, gL-g%,

Z o
is avallable in the published literature. (See refs. 11 and 12.) The
two remeining components are derived in this paper.

The upwash along the center line of the wake of a triangular wing
wilth a constant angle of attack is given in references 11 and 12. From
elther of these references the upwash along the center line of the wake
can be written as
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ai % - ‘ﬁﬁ{%ﬁ(‘%) - (- kBQ)K(kﬁﬂ *

LK) - B(k) T K(ko) - E(kp)
Jo Samm e e

for c<x< (Bm + 1)c, and

<l5’

h K(k - E(k
S el [PEELT TR L

(Bm) ky + Bm

for (Bm + 1l)c € x. Figure 2 presents the variation of §L 9% along
zZ Q

the wake center line of a triangular wing for various values of Bm.

These values were taken from references 11 and 12,

The upwash along the center line of the waeke of a triangular wing
with a constant rate of pitch is found in appendix B. From the results
of this appendix the upwash along the wake center line can be expressed
as follows:

aegéx,o,o) P
Z

0%

1 -

fl k:LE((kl) - E(klz'
0

(Bm + kl)2

fk3 Kkp) - B(kp) . (2 - 15°)K(i5) - B(s5)
1 kR(micy + 12 E

oIX

(45a)
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for ¢€x<€ (Bn+ 1)c, and

d0g(x,0,00 [y f iy | | (922 + 1)y + Bm|iCiy) __E(:)
oz CJp (Bm + kl)z Bm + kq

B (1 - 12 ()

- (15)

(2 - %)E(kh) +

38
for (Bm + 1l)c € x. Figure 3 presents the variation of EL 5—3 along
gc 9Oz
the center line of the wake for verious values of the parameter Bm.

o9
The upwash component S_g along the wake center line 1s deter-
b

mined in eppendix C., From the results of this appendix the upwash com-

06 ‘
ponent g—g along the center line of the weke is
z

892 3 Aime 2
S - () ) (-x )K(kﬂ (6z)

for ¢ $x = (Bm+ l)c, and

d6p 2a(x - c)[: o :l
= - 2E(k),) - {1 - K 4 6b
S = o |20 (2 - u¥)xw,) (46D)
B 08
for (Bm + l)ec € x. Figure 4 presents the variation of —~ S along
ac

the wake center line for various values of the parameter Bm.

The three components of the time-dependent upwash along the wake
center line were added to yield the upwash at t = t,. Figure 5 presents

the results of this addition. The contribution of each component is
shown in figure 6 for a Mach number of 1.67 and an aspect ratio of 2.
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Note that in this case no component is so small that it may be neglected.
Tt can be seen from equation (35) that the upwash at any arbitrary time
can be found from figures 2 and 5.

The results of exact and approximate calculations of the upwash
behind triangular wings with a constant vertical acceleration are given
in figures 7 and 8. Figure 7 presents values determined by the expres-
sion (eq. (35)) for exact linearized upwash values and values determined
by the approximate relation (eq. (37b)) for various aspect ratios for a
Mach number of 1.41s. TFigure 8 presents exact linearized values of the
upwash and values determined by the approximate relation (eq. (37Db))
for various Mach numbers for an aspect ratio of 2. The origin of the

x-axis used in equation (37b) was located at the %? point. Figures T

and 8 indicate that equation (37b) yields results which are good approxi-
mations to the upwash along the center line of the wake of a delta wing
with subsonic leading edges.

The Rectangular Wing

The upwash in the 2z = O plane behind a rectangular wing with a
constant vertical acceleration is determined. From a knowledge of the
upwash from the unswept wing of infinite span and the upwash from one
tip of a semi-infinite rectangular wing, the upwash from a rectangular
wing can be found as long as the Mach line from the leading edge of one
tip section does not intersect the opposite tip. This was done for the
wing at a constant angle of attack in reference 10 and for the wing
pitching about its leading edge in reference 15.

The general upwash distribution behind a rectangular wing is not
easily obtained in a convenient mathematical form. By use of equa-
tion (36) the upwash close to the wing trailing edge can, however, be
expressed in a concise mathematical form. The upwash close to the

trailing edge of one tip of a rectangular wing is given by

& -1 cos"l(—a-y—B + l> + 2 -Z(X 4 i) - V_(t_—t_o)E_ - %— cos’l(gg{—]3 + lﬂ

ac TtB2 c 7 cl\e B c

(7)

where the coordinate axes are located at the leading edge of the tip
section (see fig. 9). The spanwise upwash distribution close behind the
trailing edge of a semi-infinite rectangular wing is obtained by putting
negative values of y into equation (47).

The upwash distribution for the rectanguler wing is presented in
the form of curves. Unfortunately, the results for the time-dependent
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upwash from a wing with a certain aspect ratio at a given Mach number

can not be transformed to the results for the upwash from a wing with a
different aspect ratio and at a different Mach number as can be done for
wings in steady flows. The upwash for the motions considered here, how-
ever, has been expressed in terms of steady-flow solutions. These steady-
flow solutions can be transformed from one case to another. Each com-
ponent of the upwash is given separately and then these components are
combined for certain cases.

The upwash from a rectangular wing at a constant angle of attack
was given in reference 10. Figure 10 presents the upwash from one tip
of a rectangular wing at a constant angle of attack. In figure 11 the
upwash distributions from both tips are combined for various values of
the aspect ratio Mach number parsmeter AB.

The upwash from a rectangular pitching wing was presented in ref-
erence 15. Figure 12 shows the upwash distribution from one %ip of a
rectangular wing pitching about its leading edge. In figure 13 the
upwash distributions from both tips are combined for various velues of
aspect ratio Mach number parameter AB for the axis of pitch located
at the wing midchord point.

e
The upwash component 522 was evaluated by using equation (28).
. z

2 06
Figure 14 shows the distribution of the upwash component ¥L-S_g behind
ac 0z
one tip of a rectangular wing.

The three components of the time-dependent upwash for one tip of a
rectangular wing were added to yileld the time-dependent upwash behind
one tip of a rectangular wing at t = tg. Figure 15 presents the results
of this addition for various Mach numbers. The contribution of each
upwash component is shown in figure 16. This figure indicates that no
one of the three components which make up the upwash at t = t; 1is so

small that it may be neglected in upwash calculations. In figures 17

to 22 the upwash distributions from both tips are combined for various
Mach numbers and aspect ratios. Fram equation (35) it can be easily

seen that the upwash at any time can be determined from figures 11 and 17
to 22,

Figure 23 presents exact (linearized) and approximate values of
upwash at t = tp for a wing with an aspect ratio of 1 for Mach numbers
of 1.41h and 2.2k for x/c of 3 and 6. Figure 24 presents exact (line-
arized) and approximate values of upwash at t = t, for a wing with an
aspect ratio of 3 for Mach numbers of 1.41% and 2.2k for x/c of 3 and 6.
These two figures indicate that the approximate values are in fair agree-
ment with the exact values for x/c of 6. As pointed out previously, the
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flow behind a rectangular airfoil mey be considered as being made up of
the effect of the tips and the effect of a two~dimensional airfoil.
Since the approximation bresks down for the two-dimensional eirfoil,
the effect of the tips must be considerably larger than the effect of
the two-dimensional airfoil in order that the approximation be valid.
This explains the large discrepancy between the exact and epproximate
values shown in figure 24 for the region near the center of the wake.

It should be noted that the upwash distributions shown in fig-
ures 11, 13, and 17 to 24 have been plotted from the wing axis of symmetry
out to the wing tip. In figures 10, 12, 1k, 15, and 16, showing upwash
distributions from one tip of & rectangulsr wing, the origin is located
at the wing tip.

AFERODYNAMIC COEFFICIENTS

In order to calculate the contribution of the horizontal tail to
the aserodynamic coefficients a knowledge of the upwash produced by the
wing is required. FExact (linearized) and approximate methods for the
calculation of the upwash induced by a wing which has a constant vertical
acceleration were presented in the preceding sections. It was found that
the exact (linearized) upwash induced behind wings with a constant accel-
eration contains the upwash induced behind the same wing at a constant
angle of attack and with a constant rate of pitch. In this section exact
and approximate methods for the calculation of the serodynamic coeffi-
cients on the horizontal tail are presented.

The calculation of the tail contribution to the derivatives con-
sidered in this paper can be accomplished by utilizing the concept of
the "effective angle of sttack." The effective angle of attack is
defined in such a way that the local angle-of-attack distribution on the
tall surface 1s changed in order to take into account the upwash induced
by the wing. The tail surface is then considered as an isolated lifting
surface on which the local angle-of-attack distribution is given by the
effective angle of attack. Except for the two-dimensional wing-tail
combination treated, the exact (linearized) values of the aerodynamic
coefficients to be presented were obtained by numerical integrations.

The coordinate axes used in determining the serodynamic coefficients
are illustrated in figure 25(a). The origin is located at the center of
gravity of the aircraft. The effect of changes in the center-of-gravity
locations can be taken into account by the transformations presented in
table I. The stability axes are i1llustrated in figure 25(b), and the
transformations from body axes to stability axes are given in table I.
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The Iift and Moment Due to Angle of Attack for
Wing-Tail Combinations

Equations for tail contribution.- The effective angle of attack used
in calculating the tail contribution to Cr, and Cp, is

o= a(l -3 ﬁw;) (48)

The lifting pressure associated with equation (48) can be found by
steady-flow methods.

The normal-force and moment coefficients resulting from the pres-
sure difference through the tail surface can be expressed as

AC L9)
StCt
= x AP ds (50)
o “PVQStCt SwCy /]E;ail

where x 1is measured from the axis about which the moment is taken.

An approximstion of the contribution of the tail to the stability
derivatives CIQ and Cm@ can be found by making use of an arithmetic

average of the upwash induced by the wing at the tail location. When
this 1s done, ACIa and Acma may be expressed as

_ S5¢ (g,
ACr, = -S-w-<1 + = a.V)CIGIt (51)

St Ct
A =-§<1 * 5 E_)(—é’; Cr |4 * T C"’u,lt) (52)
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c
For most cases fL Clmlt is much greater than :E Cmalt and there-

~ Cyr Cy
fore equation (52) can be approximated by

S¢ 3 a1

Two—-dimensional wing-tail combinations.- The CIa and the Cma

for the two-dimensional wing-tail combination can be expressed in closed
form. The sum of the wing and the tail contributions to these deriva-
tives is as follows: For the case where the tail lies downstream of

the Mach sheet from the trailing edge of the wing (see fig. 26(a)),

Cr,, = %(1 + -z-w'i) (54)
and
cmu=-3<1 -_gx:+-231> (55)
B Cy °w2

For the case where the Mach sheet from the trailing edge of the wing
intersects the tail surface (see fig. 26(b)),

— c —
o, =21+ .1, 5t B2
IJCL B( CW CW+2CW Cw (56)
and
1 254 1 ct 2 vA > C+1 =
Cmu— =1 - &+ {2 + - x_ _ B_Z _ZBZ_'_ + +2-iBZ
B Cy Cy 2cy Cy Cy Cy Cw2 cw2

(57)

For the case where the tail surface lies between the Mach sheet from the

leading edge of the wing and the Mach sheet from the trailing edge of
the wing (see fig. 26(c)),
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Cry = 2 (58)

and
2 X
Cmm = -B—<l -2 —°w> (59)

Figure 27 presents a comparison of values of the Cmm calculated
by the preceding exact expressions with the values of the Cmm where

the tail contribution was calculated by the approximate relation given
by equation (53). Equation (53) is a good approximation to the tail
contribution to the Cm, for the case considered in figure 27. The

discontinuities in the curves in figure 27 correspond to points where
the type of flow over the tail surface changes. (See fig. 26.)

A triangular wing-tail combination.- The CIm and Cma of a tri-

angular wing-tall combination are considered. The wing has an aspect
ratio of 2.31 and the aspect ratio of the tail is twice that of the
wing. The wing and the tail are located in the same plane, and the root
chord of the wing is four times the root chord of the tail. The Mach
number 1s restricted to the range where the leading edge of the wing

is subsonic and the leading edge of the tail is supersonic.

In reference 11 calculated values of upwash behind triangular wings
with subsonlic leading edges are presented. These values could be used
to calculate the tall contribution to the CIa and Cma of the wing-

tail combination which is being considered here., In order to be con-
sistent with what follows, however, it is assumed that the spanwise
variation of the upwash can be neglected and the upwash is determined
by the values of the upwash along the center line of the wake. (An
examination of the upwash values presented in reference 11 indicates
thet spanwise varlation of the upwash is small in the region where the

tail is located.)
Figure 28 presents the variation of Cr, Wwith 1/cy for three

Mach numbers for the triangular wing-tail combination under consider-
ation. Figure 29 presents the variation of Cm@ with Z/cw for two

of the Mach numbers considered in figure 28. Figure 30 presents a com-
parison of the exact (linearized) velues of the Cp, Wwith the values

of Cp, where the tail contribution was calculated by the approximate
relation given by equation (53). Figure 30 indicates that equation (53)
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is a good approximation to the tail contribution to Cma for the cases
being considered in this section.

Rectangular-wing—triangular-tail combinations.- The CIa and Cma

of a number of rectangular-wing—triangular-tail combinations are con-
sidered. These wing-tail combinations are illustrated in figure 31 where
the defining parameters are also presented. The center of gravity is
located at the midchord point of the wing.

The variation of Cr with 1/cy of the rectangular-wing—

triangular-tail combination for several Mach numbers is presented in
figure 32 whereas the variation of Cma is given in figure %5. The

decrease in Clm with increasing Z/cw is a result of the increase in
the upwash with increasing 1/cy. In certain cases, the effect of the

upwash from the wing on the tail is large enough to cause the total
Cm, to become destabilizing (fig. 33).

Figure 34 presents a comparison of the exact (linearized) values
of Cp, with the values of Cn, where the tail contribution was cal-

culated by the approximate relation given by equation (53). Figure 34
indicates that equation (53) is a good approximation to the tail con-
tribution to Cmm for the cases considered.

The Lift and Moment Due to Steady Pitching
for Wing-Teil Combinations

General expressions for the aerodynamic coefficients.- The effec-
tive angle of attack of a tail surface in pitching motion is

o - _(_ P2 __) (60)

where the origin of the x-axis is located at the axis of pitch. The
lifting pressure assoclated with o can be found by steady-flow methods.

The normal-force and moment coefficients resulting from the 1lifting
pressure on the tail surface can be expressed as
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S
Mop, = =S —t-]f 2P 46 (61)
’ St Sy Tail surface EEE
2v
Mgy =55 Stet ff X2 gg (62)
Stct SwCw Tail surface s

v

where the moment axis is taken about the axis of pitch.
Approximations of the contribution of the tail to the stability
derivatives CLq and Cmq can be found by making use of an arithmetic

average of the upwash induced by the wing at the tail location. When
this is done, the CLq and Cmq of the wing-tail combination may be

expressed as

_ St(, 1 t
Crq = Crq|wing * —s',,;(? . Cro|meil ¥ 2 57 Clo|ma11 * F CIq|Ta11>

(:gwis-)echITail e iy % C’“alTan] (k)

where in this case 1 is the distance from the axis of pitch to the
centroid of the tall area. (The axis of pltch and the moment axls for

the stability derivatives of the igolated tail are located at the centroid
of the tall area.)
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Further approximations to CLq and Cmq can be obtained by

retaining only the highest powers of Z/cw in the preceding expressions.
The following approximate relations are thereby obtained:

St
=2 S gl (65)

o=+ S &

Two-dimensional wing-tail combinations.- The equations for CIq
and Cmq for the two-dimensional wing-tail combinations can be expressed

in closed form. The sum of the wing and the tail contributions to these
derivatives are as follows: For the case where the tail lies downstream
of the Mach sheet from the trailing edge of the wing (see fig. 26(a)),

i X lcy
Cr ==1-2X 422 6
and
- -\2 3 2
gl1 x X 1°t> °t(z>
=92 X (X)) &+ —[2) + =(~ (68)
Tq B|3 ¢y (cw> 12<;w cr\Cy

For the case where the Mach sheet from the trailing edge of the wing
intersects the tall surface (see fig. 26(b)),

332% 21321+l 2z, ot m\ _(z\, (), (Y
q Bl—éw Cy Cwe Cy Cy Cw 2cy

(69)
and
Cm.—._.2__2.+.§_.i_2_.+_z__l + BZ lcty . B°Z 22—l+§—
e BP cwldey? Cw Culey®  3ey? oyl Cw
2 -2 2 2 3
Ct2—£§)+i<§12 ZCZ >+ c‘t3 (70)
hey™ oy WV om o 20T/ 12ey
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For the case where the tail surface lies between the Mach sheet from
the leading edge of the wing and the Mach sheet from the trailing edge
of the wing (see fig. 26(c)),

4 o% 235%)
Cr =21 - =4 —2 (71)
Lq B< e o2
and
- -\2 =
Cay = -Sf% - £+ _x_> 5 2200 (72)
e T

Figure 35 presents a comparison between exact (linearized) values
of the Cp, calculated from equations (67), (69), and (71) and approxi-

mate values calculated by the use of equation (65). TFigure 36 presents
a comparison between exact (linearized) values of the Cmq calculated

from equations (68), (70), and (72) and approximate values calculated by
the use of equation (66). Figures 35 and 36 indicate that the epproxi-
mate relations given by equations (65) and (66) yield results which are
in good agreement with the exact (linearized) values for 1/c, greater

than 2 for the cases considered. The poor agreement between exact and
approximate values of CIq for the values of Z/cw less than 1.7

(fig. 35) are a result of neglecting the effect of the upwash induced
by the wing on the tail surface.

A triengular wing-tall combination.- The CIq and Cmq of a

triangular wing-tail combination are considered for the same configu-
rations and Mach number range which were considered previously in the
section on the 1lift and pitching moment due to angle of attack.

It is assumed that the spanwise variation of the upwash due to
pitching can be neglected and that the upwash at the tail locations can
be determined from the values of upwash along the center line of the wake.
Under these assumptions the upwash at the tail location due to the wing
pitching about its apex can be determined from figure 3. The upwash at
any point on the center line of the weke due to the wing pitching about
an axis at an arbitrary location can be found by the use of figures 2
and 3 and the relation

1 9% _ 1 %% _d 3 %
qc 3z Pitching about 4¢ 3z Pitching ¢ 3z av

arbitrary axis about apex
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where dgo 1s the distence from the apex of the wing to the location of
the arbitrary axis of pitch.

The variation of CLq and Cmq with l/cy for three Mach numbers
is presented in figures 37 and 38, respectively.

A comparison between exact (linearized) values of CLq and the
approximate values of CIq calculated from equation (65) is given in

figure 39. The large discrepancy between the exact and approximate
values for the lower Mach number.is a result of neglecting the upwash
from the wing due to pitching and CLq of the wing.

Figure 40 presents a comparison between exact (linearized) values
of the Cmq and approximaste values of the Cmq calculated from equa-

tion (66). This figure indicates that, for values of 1/c,; greater
than 2, equation (66) ylelds a good approximation to Cmq for the two
cases considered.

Plots of CLq and Cmq for three different center-of-gravity loca-

tions at Mach number 1.4 are presented in figures 41 and 42, respec-
tively; these plots indicate that the center-of-gravity location has a
large effect on CLq and Cmq for the cases considered.

Figure 43 presents a comparison between exact (1inearized) values
of CIq and values calculated from equation (65) for two different

center-of-gravity locations. The poor agreement between exact and
approximate values shown in figure 43 indicates that equation (65) should
not be used when the center of gravity is not located near the centroid
of the wing.

For two different center-of-gravity locations, a comparison between
exact (linearized) values of qu and values calculated from equation (66)

is made in figure 44. Since the agreement for the lower values of l/cw

is poor, this comparison indicates that care should be exercised when
equation (66) is used for cases where the center of gravity is not located
near the centroid of the wing.

Rectangular-wing—triangular-tail combinations.- The CLq and Cmq

of a number of rectangular-wing—triangular-tail combinations are con-
sidered. These wing-tall combinations are illustrated in figure 31 where
the defining perameters are also presented. These are the same configu-
rations that were considered previously in the sections on the 1ift and
pitching moment due to angle of attack.
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The variation of CLq with 1/cy of the wing-tail combination for

several Mach numbers is presented in figure 45 whereas the variation of
Cmq with 1/c; 1s presented in figure 46.

A comparison of the exact (linearized) values of ch and approxi-

mate values calculated from equation (65) for two wing-tail configura-
tions and two Mach numbers is presented in figure 47. There is good
agreement between the exact and the approximate values for the cases
considered.

Good agreement between the exact (linearized) values of Cmq and

the approximate values calculated from equation (66) for the cases con-
sidered is indicated in figure 48 which presents these values for two
wing-tail configurations and two Mach numbers.

Figures 49 and 50 present CLq and Cmq, respectively, for three

different center-of-gravity locations at Mach number 1.414k for two dif-
ferent wing-tall combinations. These figures indicate that the center-
of -gravity location has a large effect on CLq and Cmq- for the cases

considered.

A comparison between exact (linearized) values of CIq and values

calculated from equation (65) for two different center-of-gravity loca-
tions and two different configurations is presented in figure 51. The
poor agreement between the exact and approximate values shown in fig-
ure 51 indicates that equation (65) should not be used when the center
of gravity is not located near the centroid of the wing.

Figure 52 presents a comparison between exact (linearized) values
of the Cp, eand-values calculated from equation (66) for two different

center-of -gravity locations and two different configurations. The poor
agreement for the lower values of Z/cw shown in figure 52 indicates

that results calculated from the approximate equation (66) are unreliable
for center-of-gravity locatlions that are not near the centroid of the
wing area. ‘

The Iift and Moment Resulting From a Constant Vertical
Acceleration for Wing-Tail Combinations
General expressions for aerodynamic coefficients.- The upwash on the

horizontal-tail surface resulting from the constant vertical acceleration
ig given by

Pz = -6V(t - to)
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The upwash induced by the wing at the tail location is (from eg. (35))

_ s M3 8 Mx|d Qo , 902
Bo=de Sy ge t efg (b - to) - S e o

The effective angle of attack of the tail is given by

. d %) &M d 8 seMxd % 1 08
-“(t"°°)<1+a—&>+'v—;e$'q—c‘vgezs;a7+vaz

The preceding equation indicates that the effective angle of attack of
the tail is made up of two components, one which varies linearly with
time and one which is of a steady-state nature. It follows that, 1in
order to determine the potential induced by the tail on its surface,

it is necessary to solve two problems, one which has an angle-of-attack
variation given by

9 %) (73)

q=a&—t&@+a &

and one which has an angle-of-attack variation given by

=M 0l delxd e, 1% (74)

The potential corresponding to o7 can be found by the methods given in

the theoretical development concerning upwash and the potential corre-
sponding to op can be found by steady-flow methods.

After the potential is determined, the pressure can be found by
making use of the relation

&P = o(V APy + OPy)

where A¢ ‘represents the potential difference induced by the tail through
its surface.
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The normal force and moment resulting from the pressure difference
through the tail surface can be expressed by

A=, o
Tail surface

ﬂi = -hZ7;a x AP ds

il surface

and

The two quantities, Fﬁ and ﬂi, can be expressed in coefficient form by

B _

= L[7\ AP ds
g VQSW pVQSw Tail surface

=
My 2

— == JQP x AP ds
g Veswcw pVQSwEW Tail surface

The tall contribution to the stability derivatives CI& and Cp, can

be expressed as

Are = = = St.c.t_/] AP ds : (75)
apVS¢ey SyCy VY Tail surface

; 2.2
ACm& =~ 4 %% x AP ds (76)

&pVSEL2 8,8,V Tail surface

The difficulties involved in calculating the exact values of the
tail contribution to the stability derivatives CI& and Cm& are in




w6 NACA TN 3072

most cases too great for practical computations. The 1lift on tails with
supersonic leading edges and trailing edges which are perpendicular to
the free-stream direction can, however, be treated by the method pre-
sented in reference 22. Expressions for the moment on the tail are
developed in appendix D for the case of an angle-of-attack distribution
that increases linearly with time.

An approximation to the contribution of the tail to the stability
derivatives Cr, and Cps; can be found (as was done in ref. 16) by

making use of an arithmetic average velue of the upwash induced by the
wing at the tail location. When this is done, ACI& and ACm& may be

expressed by

2V —
* 57 %2 Clafran (71

a0y = SE2E (14 2 )

and

2
_ St<ct 1 21V —
A, " s, €;> ‘g‘( Sz CLV>CIa|Ta11 532 5 %2 CImlTail

2va,
+ . =
acy CmalTail

(78)

where 1 1is the distance from the center of gravity to the reference
and Cm&ITail are teken.

Further approximations to CL& and Cm& can be obtalned by

reteining only the terms which are of the highest order in 1 in equa-
tions (77) and (78). When these terms are retained, the following
approximate relations are obtained:

St 1 a Qa

St

ol = 2 ﬁ(cw) 5

(80)

Lo | mat1
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Equations (79) and (80) can also be obtained by assuming a time-lag
effect in the downwash from the wing. Approximate expressions for wing-
tail combinations are

~ St 1 0 Qo
Cre, ® Ctgliing 2 5, 5 87 av lulrest (1)
and
5t /1 B Qa
Cug, ~ sw<aw> 52 av Clo| Tat1 (82)

The Cp, Of the wing has been neglected in equation (82) because it is
usually small.

Two-dimensional wing-tail combinations.- The equations for CL&
and Cm& for two-dimensional wing-tail combinations can be expressed

in closed form. The sum of the wing and the tail contributions are as
follows (these expressions were obtained by integrations of the pressure
distribution resulting from a constant vertical acceleration over the
wing and tail surfaces): For the case where the tail lies downstream
of the Mach sheet from the trailing edge of the wing (see fig. 26(a)),

ok ha

Cre = é.+ ) (83)
_ 81 X 1 /et | leg Ct

Cm&___.g_.a;;+_(_) +_§.<]_+2_.> (81;.)

For the case where the Mach sheet from the trailing edge of the wing
intersects the tail surface (see fig. 26(b)),

-5 (85)
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Blowlze 2 of o2 o hey? o C\iey,? 3y’
3

ey 2 L\, 122, % ) 2, St (86)

et oy ow\d o2 202 cy?) P 120

For the case where the tail surface lies between the Mach sheet from the
leading edge of the wing and the Mach sheet from the trailing edge of
the wing (see fig. 26(c)),

MPBzc
CI&=-§3—<1-2 032 t> (87)
L % M?BEth>
6 = —fo-5 X o 20 (88)
" 3ﬁ3< w eyd

A comparison between exact (linearized) values of the Crs, and

values calculated from equation (81) is presented in figure 53 for two
Mach nmubers. The poor agreement between exact and approximate values
shown in figure 53 is to be expected because the upwash behind the
two-dimensional airfoil can not be approximeted by a simple time-lag
effect.

Figure 54 presents a comparison between exact (linearized) values
of the Cm& and vaelues calculated from equation (82) for two Mach num-

bers. This figure indicates that equation (82) can not be used for two-
dimensional wing-tail combinations. The poor agreement between exact
and approximate values shown in figure 54 is to be expected because the
upwash behind the wing does not exhibit a time-lag effect.
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A triangular wing-tall combination.- The CL& and Cm& of a

triangular wing-tail combination are considered for the same configura-
tion with the same Mach number range which was considered previously in
the sections on the 1ift and pitching moment due to angle of attack and
in the sections on the 1ift and pitching moment due to pitching.

It is assumed that the spanwise variation of the upwash due to a
constant vertical acceleration can be neglected and that the upwash at
the tail location can be determined from the values of the upwash along
the center line of the wake. Under these assumptions the upwash at the
tail location due to a constant vertical acceleration at t = t, can be

found from figure 5.

The variation of CI& and Cm& with 1/c, for three Mach numbers
is presented in figures 55 and 56, respectively.

A comparison between exact (neglecting spanwise veriations in
upwash) values of CL& and approximate velues calculated from equa-

tion (81) (fig. 57) shows good agreement between the exact and approxi-
mate values.

A similar comparison between exact (neglecting spanwise variations
in upwash) values of Cm& and approximate values calculated from egua-

tion (82) (fig. 58) also shows good agreement between the exact and the.
approximate values.

Figure 59 presents the variation of Cm& for three different center-

of-gravity locations for Mach number 1l.4lt. This figure indicates that
the center-of-gravity location has a large effect on Cme, -

Exact (neglecting spanwise variations in upwash) values of Cm&

and values calculated from equation (82) for two different center-of-
gravity locations at Mach number 1.4l are compared in figure 60. The
agreement between exact and approximate values is much poorer in these
cases than for the cases shown in figure 58. This result indicates that
equation (82) should not be used for cases where the center of gravity
is not located near the centroid of the wing ares.

Rectangular-wing—triangular-tail conbinations.- The CL& and Cm&

of a number of rectangular-wing-—triangular-tail combinations are con-
gsldered. These wing-tail configurations are illustrated in figure 31

where the defining parameters are also presented. These are the same

configurations that were considered previously in the sections on the

1ift and moment due to angle of attack and in the sections on the 1lift
and moment due to pitching.
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The variation of CI& and Cma with z/cw for several Mach num-
bers is presented in figures 61 and 62, respectively.

Figure 63 presents a comparison between exact values of CIEL and

values calculated from equation (81) for two different wing-tail combi-
nations. Figure 63(a) shows good agreement between exact and approxi-
mate values for a wing with an aspect ratio of 1 whereas figure 63(b)
shows poor agreement between the exact and approximate values for a wing
with an aspect ratio of 4. This poor agreement is to be expected because
the upwash behind the wing with an aspect ratio of 4 (fig. 63(b)) exhibits
some of the two-dimensional characteristics.

A comparison between exact values of . and the values calculated

from equation (82) for two different wing-tail combinations is presented
in figure 64. Figure 64(a) (aspect-ratio-1 wing) shows fairly good
agreement between exact and approximate values, and figure 64(b) (aspect-
ratio-4 wing) shows poor agreement which is caused by the two-dimensional
character of the upwash behind the wing.

The variation of Cm& with Z/cw for three center-of-gravity loca-

tions for two configurations is given in figure 65. This figure indicates
that the center-of-gravity location has a strong effect on Cp,.
a

Figure 66 presents a comparison between exact values of Cm& and

approximate values calculated from equation (82). Figure 66(a) indi-
cates that equation (82) should not be used for cases where the center
of gravity is not located near the centrold of the wing area for a wing
of low aspect ratio whereas figure 66(b) indicates that edquation (82)
should not be used at all for wings of high aspect ratio.

The Cmq + Cpz  for a Number of Wing-Tail Combinations

The expression Cmq + Cm& partly determines the damping of longl-
tudinal oscillations of aircraft. For this reason, Cmq + Cm& is given
separate consideration in this section.

Figure 67 presents Cmq + Cm& for a series of two-dimensional wing-

tail combinations in which the center of gravity is located at the mid-
chord point of the wing, Z/cw is equal to 2.25, the ratio ct/Cy is

%, and the height of the tail surface above the wing has various



NACA TN 3072 51

velues. The discontinuities in slope of the curves in figure 67 corre-
spond to points where the type of flow over the tail surface changes
(see fig. 26). Figure 67 indicates that, when the tall lies between
the Mach sheets from the leading and trailing edges of the wing (see
fig. 26(c)), Cmq + Cp, 1is decreased considerably from the values for

the same combination where the wing and the tail lie in the same plane.

The variation of Cmq + Cm& with 1/c; is presented in figure 68
for two Mach numbers for a two-dimensional wing-tail combination in
which the center of gravity is located at the midchord point of the wing,
the ratio cgfey 1s %, and Z/e,; 1s % This figure indicates that

Cmq.+ Cm, 1s decreased by increasing 1/cy-

Figure 69 presents the variation of Cmq + . With Mach number

for a two-dimensional wing-tail combination in which the center of
gravity is located at the mlidchord point of the wing, the ratio /ey

has various values, the ratio cy/c, 1s %, and the tail lies in the plane
of the wing.

The relation between Mach number and center-of-gravity location
which causes Cmq + Cm& to be zero for five two-dimensional wing-tail

combinations is shown in figure T7O.

Figure Tl presents the variation of + « wWith 1 for
Cy

three Mach numbers for the same triangular wing-tail combination as was
considered previously. Figure T2 presents the variation of Cmq + Cm&

with Z/cw for various Mach numbers for the same rectangular-wing—

trienguler-tail combinations as were considered previously. These fig-
ures indicate that Cmq + Cm& increases raplidly with l/cw.

CONCLUDING REMARKS

The force and moment coefficients of an aircraft undergoing unsteady
longitudinal motlions at supersonic speeds can be expressed in terms of an
infinite series of stability derivatives of successively higher orders.
This representation of the aerodynamic forces and moments is felt to be
useful in accounting for the unsteady influences in stability studies.

In this paper attention is primarily devoted to the establishment of the
more common stability derivatives. The stability derivatives resulting
from unsteady motions that appear to be  the most important are those
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associated with constant vertical acceleration. The calculation of the
upwash by the linearized theory behind wings with constant vertical accel-
erations can be reduced to solving a number of steady-flow problems.

One of these steady-flow problems is the determination of the upwash
behind a wing at a constant angle of attack and another of these steady-
flow problems is the determination of the flow behind a wing induced by

a constant rate of pitch. The effects of the rolling up of the wake and
other distortions are neglected and it is assumed that the wake remains

in the plane of the wing.

For some plan forms the upwash at points which are not located near
the Mach sheet from the trailing edge of the wing resulting from a con-
stant vertical acceleration can be approximated very well by using the
upwash due to a constant angle of atbtack and a time-lag effect. This
approximation breaks down for the two-dimensional airfoil and yields
poor results for high-aspect-ratio rectangular wings. The few calcu-
lated examples seem to indicate that in genersl a simple time-lag effect
yields good approximations to the upwash due to a constant vertical
acceleration behind unswept wings of low aspect ratio and yields a poor
approximation to the upwash behind unswept wings of high aspect ratio.
The effects of sweep were not investigated in any of the examples which
were calculated.

For the wing-tail combinations investigated, the results indicate
that the moment coefficient resulting from a steady pitching qmq can be

approximated to a fairly high degree of accuracy by a simple expression.
This approximation essentially involves accounting for the 1ift arising
as a result of the geometric angle of attack at the tail associated with
the pitching motion.

The results also indicate that the simple time-lag effect, which is
sometimes used to calculate the moment resulting from a constant vertical
acceleration Cm& for aircraft at subsonic speeds, is not reliable at

supersonic speeds. A more reliable method of calculating Cp, would be
i?

to determine the upwash produced by a wing with a constant vertical
acceleration. This can be accomplished by the methods developed herein
or by calculating the components of the upwash by the use of lifting
lines. The contribution of the horizontal tail to Cm& would then be

found by the use of exact or approximate relations for the tail contri-
bution to Cm& given herein.

The results for two-dimensional wing-tail combinations seem to
indicate that the damping of longitudinal oscillations due to Cmq + Cm&

is increased considerably if the tail surface lies between the Mach sheet
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from the leading edge of the wing and the Mach sheet from the trailing
edge of the wing. Calculated values of Cmq + Cm& indicate that the

damping contributed by this factor increases rapidly as the distance
from the wing to the tail is increased.

Langley Aeronautical ILaboratory,
National Advisory Committee for Aeronautics,
Iangley Field, Va., December 11, 1953.
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APPENDTX A

THE DIFFERENTIATION OF 62

The function 6p is given by equation (22) or equation (24). The
expression for 65 as given by equation (22) is

B2 Aq(yy) |
82(x,y,2) = Z (—J)2—B2(Y2+22)dy+
BT o;8°v Yy Y2+z2qx 1

If X Allr ay
Wing (Y2 + z2)R T W

By applying the rule for the differentiation of a definite Iintegral with
respect to a parameter to the first integral on the right-hand side of
892 392

and —— can be written as

equation (22),

dy Jz
hy 2(x - J)2 El
38, (x,y,2) 2 ( l) Y2 + z2 R
= 5 dyy +
Sy 2BV
B (22 + 22)|(x - 9) - B2(2 + 22)
Xy
on BYf»/:ﬁng (¥2 + z2)R el (A1)

- J)2 - B2(Y2 + z2) -

h,
BQQ(X:Y: z) -1 m(yl) NG V(x
oz 2xB2V (¥2 + z2)2

z2(x ~ J)2 X Moy
dy dxy dy
o 2“ oz jIIing (¥ + 2R ¢
V(x - J)2 - B2(¥2 + 22)

(A2)
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Equations (A1) and (A2) are valid when the limits of integration, h
and hp, are elther the Mach cone from the point x,y,z or the plan-form
tips.

Equations (Al) and (A2) become indeterminate at the apex of the

392(1(,}',0)

hyperbole as z approaches zero. The value of can be found

directly from 6,(x,y,0) since this value is known. The value of
aeg(x;yyo)

oz

is given by (fram eq. (17), ref. 15)

&%92
09 (x O) d
2\X,Y, X1 Byl ax, dyy -
ingt+wake

BABQR

ox 08
1 1 2
'2‘1?7[ x  MlT24%

ok

Separating the wing and wake integrals ylelds

BEAB 2
oL} 0 %, dy -BY
302 (x,¥,0) _ hzyr 1 aY1 LI g ay - A ax;YByl a, R ax, -
8 Wing * 1 (yl) X
83292 R d
P e - B 00
| TR U172 A‘S;a

The second integral on the right-hand side of the preceding expression can
be integrated with respect to x;. The result of performing this integra-
tion can be expressed as
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9 A8,
Bee(x,y,o) 1 Bxl ay.'L
NS A = = dx) dyy -
oz 2x Wing X
by 3o \_\/( 5)2 - Bx° 1
< 2 X - - - B cos” dyy -
2x hy Oy Byll_ Y x-Jd
aaAee Ham 30
1P = -Ba2 (a3)
XY 2 ox
%m0 ‘ '
Note that =772 mey be written as a function of y; since x; = J(yl).
axl oy

The expression for 6o as gilven by equation (2k4) is
i 1
8o(x,y,2) = ""—'f ﬂp()\:}’)z)d)\ + —'é-fx Q-WO\)Y;Z)G-}\
BV Ui B2y Jig

The lower limit of the preceding integrals is a function of y and z.
In the differentiation of the preceding integrals with respect to either
Yy or 2, this variasble limit must be considered.

The trailing edge of the wing may be divided into three types. The
first of these is the completely supersonic trailing edge. In this type
of trailing edge, the component of free-stream velocity normal to the
trailing edge is always supersonic. (See fig. 73(a).) The second type
of trailing edge is the completely subsonic edge. Here, the component
of free-stream velocity normal to the trailing edge is subsonic. (See
fig. T3(b).) The third type of trailing edge is the mixed supersonic and
subsonic trailing edge. As its pame implies, this type of trailing edge-
has both supersonic and subsonic portions.  (See figs. T3(c) and 73(d).)

For supersonic trailing edges the wake has no effect upstream of the
trailing edge; thus, Qp(x,y,z) is zero and equation (24) reduces to

0a(x,¥,2) = 5= | 2y(\y,2)an (Ak)
BV JMg
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In order to differentiate the integral of equation (A4%) with respect to

y and =z it is convenient to express the lower limit Mg of the integral
mathematically. For all but the simplest trailing edges, the mathematical
difficulties are too great to make this expression practical. A general

procedure is set up, however, and a few simple cases are presented. The
equation of the trailing edge has been represented by

x1 = J(y1)
and the Mach cone from each point on the trailing edge is given by
(x - )2 - B2y2 - B22 = ¢ (a5)

The Mach sheet from the trailing edge is the envelope of the Mach cones
from all the polints along the trailing edge. The equation of the Mach
sheet from the tralling edge can be found by eliminating y; from the
two equations

(x - 3)2 - B3(y - y1)? - B222 = 0 (A6)
aylllE‘ - 3)2 - By - )2 - BE%I =0 (A7)

Such relationships follow from the mathematical procedure for finding the
envelope of surfaces. (See ref. 23, p. 55.)

When the trailing edge is swept at a constant angle and the trailing-
edge end points do not affect the area of the Mach surface being con-
sidered, the Mach surface 1s made up of two plane surfaces. For a
coordinate system whose orlgin is located on the trailing edge, the
equation of the trailing edge is given by
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and

T (yy1) _

1
dy1 m

Equations (A6) and (A7) become

2
J1 2 2 .2
- = -B(y—y) - Bcz= = 0O
( b) .

(X Bl)—:('--13(y-3f1)=

The elimination of y; from the two preceding equations yields
(mgx - y)2 - 22(BPm2 - 1) = 0
Thus, the equation for the Mach surface is
mX -~y - deEm.t2 -1=0 (a8)
when 2z 1s positive and

mx -y + quamt -1

when 2z 1is negative. When the trailing edge is perpendicular to the
stream direction, my = » and equation (A8) becomes

I
O

(A9)

Xx ~Bz=0 (A10)

When the trailing edge is made up of a broken line composed of two
straight-line segments, the Mach surface from the trailing edge is mede
up of parts of the after cones from the trailing-edge end points, parts
of the after cone from the point connecting the two line segments, and
the two Mach sheets from the two straight-line segments of the trailing
edge. (See figs. T4 and T5.)
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In the preceding paragraphs a method has been presented for the
determination of the equation of the Mach surface from the trailing
edge. Iet the equation of the Mach surface be represented by

x = G(y,2)

Equation (Al) then can be written as

0o(x,y,2 == Ny,2)dA A1l
2(”’)Bavjc:y,z)”"(y) (a11)

Differentiating equation (A11l) with respect to y and =z yields

%, (x,y,2) 1 fx o, (A, y,2) 1 9G(y,z)
_ i AN L Aoty W A2
S 27 o) S 27 0y (Ms) - (A12)

%0p(x,y,2) o, (\,y,2) 1 3G (y,z)
32 oy fc,:y,z) T Oy W (#2)

where Qy(Mg) is the value of Oy;(A,y,z) at the trailing-edge Mach sur-
face obtained by approaching the Mach surface from the positive x-direction
along the line (yl =y, 2y = z). The expression Oy(Mg) can be evaluated
by calculating @, on the line (y; =y, 2z = z) a small distance ¢
downstream of the trailing-edge Mach ‘sheet and then teking the limit as

€ approaches zero. For points behind the Mach surface from any straight-
line segment of a trailing edge, the quantity O,;(Mg) is given by

.|.
QWC%E,y,O+> for positive 2z, provided the Mach surface at the point

being consldered is not part of the Mach come from an end point of the
line segment.

For wings with subsonic trailing edges, @p and @, at the trailing-

edge Mach surface are zero. Equation (24) then can be differentiated to
yleld
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892(3{)3')2) 1 9 (A:y)z) 1 fx anﬂ'(}\’y’z)
= an 4+ . AR AEANLAN p \ Alk)
oy B2V fM: oy ’ B2V JM, dy (

and

Bea(x,y,z) _ 1 fx afb(?\::)’;z) an + __l_fx M dA (A15)
Sz 22y Ju 3z B2V J M oz

For wings with mixed supersonic and subsonic trailing edges, both
QP and O, mey be discontinuous through the Mach surface from the

supersonic portions of the trailing edge. Expressions for _23_2_ and -2%2-
for wings with mixed trailing edges can be found in a manner similar to
those used iIn treating wings with other types of trailing edges. The
resulting expressions appear to be of little value since they require a
knowledge of the induced potential on the plen form and for this reason
they are not presented here.
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APPENDIX B

o
THE UPWASH -é-e—g ATONG THE WAKE CENTER LINE OF A

Z
PITCHING TRTANGULAR WING

The upwash along the center line of the wake of a pitching triangu-
lar wing with subsonic leading edges can be found by using & number of
methods. The method used here is the potential doublet method presented
in reference 11. This method was chosen because certain integrals which
arise from using this method have already been evaluated in reference 11.

The potential difference across the surface of a triangular wing
pitching sbout its apex is (from ref. 24)

20 (x,y1 ) = 2ngry\nPy2 - ;2 (B1)

where the coordinate axes are located at the wing apex. (See fig. T76.)

The potential at any point in the vertical plane of symmetry can be
expressed as (ref. 11)

f P —
2 - v.2
eq_(x,O,z) = -B% &m Xl\‘m2Xl £ dx; dy; -
o
Ef - x1)% - B2(2 + Zazl o/
£ P2 2
B22cK, f / con ax; dyq (B2)
Wake 5 o 5/2
Ex - x1)° - BS(y2 + 22)
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Equation (B2) can also be expressed as

_ 5.2 _ 42
(X,O,Z) - BEZKq ff (x X]_) 1 yi 5/2 ax dy; -
Wing x - xl) - B2(y12 + zg‘)‘—l

5 o VPx® - 1
Bzquff edxl dyy -
Wing X - X1 2 - Be(le + ZE] 3/

BechCl ﬁ et - v ax) dyy (B3)
Wake -XJ)2 ( 2+Zgz]5/2

The upwash along the center line of the wake is

8q
w(x,0,0) = lim —
z—>0 Oz

n

dxy dy; -
z—>0

2
lim B°K L/:/" 2(x - xl)\lm2xl2 -V
oz
Wing x

q
- x)? - B2 + zeﬂ 3/2

5 z‘lmle - ¥
z-—ao BZL/I]7 3/2 ax dyy -
Wing - - B2 (Y12 + Zg}'

t {2e2 - y-2
Lim B2cKg ga_ / f = 575 1 W
2—>0 2 | axe Ex - x)2 - Bz(yle + Zaﬂ

(B4)
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The first integral of equation (BY) can be evaluated to yield

un By 2 I{‘ 2(x - xl)‘i 2® - 3/2 axy &gy = j‘l K(e) - E("12 axy f“i Xe2) - E(xp) d%l (5)
Wing [

z—0 (B + k)° 1 ay(makp + 1)°

for ¢S x< (Bm + 1)c, and

ff ,(x-x:)\! Bezn; ?ia):l’ﬁ ax) ay - axqo{qun,) +x

[(h‘)—x@ -'—j%(h‘i-kl) } )

for (Bm + 1)e S x. The last two integrals in equation (B4) arise in
evaluating the potential in the vertical plane of symmetry from a tri-
angular wing. These two integrals were evaluated in reference 11. From
reference 11, the values of these expressions are found to be given by

2 y12 1 x(x) - E(kn) X5 x(ka) _ E(ke)
ayy = -2 aky
z—)O L[/:Tina x - x)2 - R(5y2 + ’2] axy &y = H X + B f K21 + Bmkz) (87)

for ¢S xS (Bm+ 1),

;Ji)moB%dfq f‘/;ring x,xl)

for (Bm + 1l)e S x,

m%‘la - yle

2 2(y,2 e]

I) - E(k)

K,
37""1%-'%"] E(_TkI?Tdkl 8)

2

m BPexy & ff fu2e2 ~ 2 dxdy-..?;ﬂ{!_:-;- e - (1 - k2K (89)
2—>0 az ok [x i x1 2 i yla . 22) /2 1 Y1 E( 3) ( 3) (ki)

for ¢S xS (Bm+ 1)e, and

2:2 . y,2

~lim Bech

z—>0 oz 3/2
Wake Ex - %)% - Bz(ng + Z’cﬂ /

for (Bm + 1)e S x.

axy dy) = ~2KgeR (ks)

(B10)
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The upwash along the wake center line is (from egs. (B4) to (B10))

oz (Bm + kl)2 dly -

304(x,0,0) _ e {zfl kl’g(kl) - E(klﬂ

: [ <o) -5 (- P)xfe) - u(s)

¢ 1% (Bukp + 1)° ) k3 ()
for ¢S xS (Bm + 1)c, and
d84(x,0,0) - K x o IKB%:@ + 1)k1 + ng(kl) E(kl) ax
dz °Jo (Bm+k1>2 Xl
Bn(l - k2)K
(e - Z)ela) + SRy (B12)

for (Bm + 1)c S x.
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APPENDIX C

THE UPWASH COMPCNENT ggg AT.ONG THE CENTER LINE OF
A

THE WAKE OF A TRTANGULAR WING

3
The upwash component Sgg can be determined by the methods pre-

z
viously presented. For this case, however, the upwash can be determined

relatively easily by the use of potential doublets and therefore this
method is used.

The difference in the x-derivative of the potential across the wake
is given by

o8& 2 _ 2
A 292 = S (c1)

The potential difference across the wake is

C

= (c2)
2 ox B2E' (Bm)

08
The upwash component Tg- along the center line of the wake is

Z
given by

2
892(;;0:0) _ 1im [/7 z(xl - c) |/m202 - ¥y axy dyy
Wake [x

z—>0 xE' (Bm) oz 3 /o
- xl)2 - B2(y12 + Zaﬂ /

(c3)
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If the indicated operations in equation (C3) are performed, the following
equations result:

%85 2cuane
== - e 2E(k3) - (1 - k32)1<(k5ﬂ (ch)

for ¢S xS (Bm + 1)e, and

% __Bxlx-c) 2E(l,) - (1 - kue)K(kh_El (c5)

#B2E' (Bm)

for (Bm + 1l)c S x.
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APPENDIX D
EXPRESSIONS FOR THE MOMENT ON CERTAIN HORIZONTAL-TATI, SURFACES

If the type of arguments utilized in references 22 and 25 are fol-
lowed, expressions may be found for the 1ift and moment (about the trailing
edge) on surfaces which have supersonic leading edges and trailing edges
vhich are perpendicular to the free-stream direction (see fig. T7(a)) for
the case of an angle-of-attack distribution which varies linearly with
time.

Consider a two-dimensional airfoil (as shown in fig. 78(a)) which
has an angle of attack given by

6 = -5(t - to)h(x) (p1)

By symmetry it is clear that the 1ift and moment coefficients based on the
area with the variable angle of attack for the wings shown in figures T78(a),
78(b), and 78(c) are the same. The wing shown in figure 78(d) can be
obtained as a simple combination of the wings shown in figures 78(a),

78(b), and 78(c). The 1ift and moment coefficients based on the area

with the variable angle of attack therefore are the same as the 1lift and
moment coefficients for the two-dimensional wing.

The potential function for the flow over the upper surface of the
two-dimensional wing illustrated in figure 78(a) is (from eq. (13))

s x-Bz . -Bz
g =22 7 s + s - o) S TGS

where x 1s the distance downstream from the leading edge of the airfoil.

The pressﬁre—difference coefficient is

55 - tonte) - = [ n(e)as (03)
BV YO

|+

ACP=




68 NACA TN 3072

The 1ift and moment coefficients are, for t = tg,

CL, = Lift/Unit length ks fc dxfx n(g)ag - (DA)
P yes Boav YO 0
2

Moment /Unit length b c x
- = - x)ax h(t)d D5)
Cn 5 fo (c - x fo (¢)ag (D5

%v"‘a‘2 o

where the moment is teken gbout the trailing edge of the airfoil.

The 1ift produced by a deflected strip such as is illustrated in
figure T7(b) is the same as that produced by the strip illustrated in
figure 78(d) and hence the same as a strip of the same width on the two-
dimensional airfoil illustrated in figure 78(a). The total 1ift and
moment coefficients for the type of airfoil illustrated in figure T7(a)
therefore are

cr = - ko ff /m h(e)de |ds (D6)
BIgy ““Airfoil surface |VL.E.
5 x
Cy = 45 ff )\f n(t)de|ds (D7)
B3SEV Airfoil surface L.E.

where A 1is the distance upstream to the element of area ds. (See
fig. 77(b).)

In the case where the airfoil illustrated. in figure T7(a) is a tail
surface and the wing-tail combination has a constant vertical accelera-
tion, the time-dependent angle-of-attack distribution on the tail surface
is given by
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In this case equations (D6) and (D7) become

oL Lift _ U[y“ b/‘ )dg ds
° v2s B3stv Tail surface ay,
2

]

X
Cy = Moment _ ff A f (l N _§_ (—?a—)dg de
% sttct B S.bc v Tail surface L.E. Bz aV

69

(D8)

(D9)
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TABLE T.- PORMULAS FOR TRANSFORMATION OF THE STABILITY DERIVATIVES Cp,

C]'_q, qu, CI&,J AND Cps FROM BADY TO STABILITY AXES
Body axes;
originl at Body axes; origin Stabllity axes; ordigin
x=0, y=20, at x =4, y=0, z =20 at x=4d4, y=0, z=20
Z =0
Stability Stability Shift in ori%:Ln Stability |Origin at (d,0,0); rotation
derivative |derivative® from (0,0,0) to (d,0,0) derivative through engle o
* + & ! * (approx. )
¢ CLq_* Cr,. - 24 Cr, ' Cr._* (approx.)
Lq 1 Ty Lq Lq
a 24 24!
* +—C -~ = -5 ' *
cmq_ Cmq c‘mq s, Mg Ewe Cmq_ Cmq
Crg, Crg® Crg, Cry' Cre* (approx. )
. o La. ' L *
Cmg, O, + =0, Crng, O

1the origin refers to a system of Carteslen coordinates used in the anelysis.

(See fig. 25(a).)

2These coefficients are for a system of body axes located at (d,0,0) in the system used in
(See fig. 25(a).)

o cps 3 o : o 4 a il - N R S S
“Thege coefficients are for a system of stability axes located at (d,0,0) in the

‘the anelysis.

system used in the analysis,

(See Pig. 25(b).)
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Exact linearized
— — Approximate

Figure 8.- Exact (linearized) and approximate (eq. (37b)) values of
upwash at t = t, &along the center line of the wake behind a triangular

wing with constant vertical acceleration for various Mach numbers. A = 2.
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A =1 for various Mach numbers.
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Figure 19.- The upwash distribution at + = ty 1In the plane of the wing

behind a rectangular wing with a constant vertical acceleration with
A =3 for various Mach numbers.
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Figure 20.- The upwash distribution at t = t5 in the plane of the wing
behind a rectangular wing with a constant vertical acceleration with
A =4 for various Mach numbers.
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Figure 21.- The upwash distribution at t =t, in the plane of the wing
behind a rectangular wing with a constant vertical acceleration with
A = 6 for various Mach numbers.
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Figure 22.~ Concluded,
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Figure 23.- Exact (linearized) and approximate (eq. (37b)) values of
upwash at t = t; in the plane of the wing behind a rectangular

wing for two Mach numbers.
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Figure 2b.- Exact (linearized) and spproximete {eq. (37b)) values of
upwash at t© = ©§; 1in the plene of the wing behind a rectanguler wing
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(a) Body axes used in determining aerodynemic coefficients.

y

(b) Stability axes (principal body esxes dashed for comparison).

Figure 25.- Systems of axes and essociated data.
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(c) Tail surface lies between Mach sheet from leading edge of wing and
Mach sheet from trailing edge of wing.

Figure 26.- Types of flow treated for the two-dimensional
wing-tail combination.
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(c) Wing aspect ratio 3; E; a 1.

Figure 32.- Continued.
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Figure 32.- Concluded.
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Figure 68.- Varietion of Cpy + Opg with 1/, for a two-dimensionsl

M1

wing-tail combination for two Mach numbers. il S
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Figure 69.- Variation of Cmq + Cmm with Mach number for a two-dimensionsal
wing-tall combinsticn for various values of 1, X b = i; 2 ao.
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Figure 70.- Veriation of Mach number M wlth center-of-gravity loca-
tion X/¢, for which Cn, + Cmy = O for five two~dimemsional wing-
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Figure 72.- Varietion of Cp, + Cpy Wwith 1/e, for several rectangular-
wing—triengular-teil combinations.
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Figure 72.~ Continued.
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(c) Wing aspect ratio 3; % = 1.

Figure T72.- Continued.
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(d) Plan form with mixed supersonic and subsonic trailing edge.

Figure 735.- Plan forms with various types of trailing edges.
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Figure T4.~ Plan form showing the Mach surface from a sweptback trailing
edge.
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Pigure 75.~ Plan form showing the Mach surface from a sweptforward tralling
edge.
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Figure T6.- Location of the coordinate axes associated with the triangular
wing.
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Supersonic leading
edge

(a) Arbitrary angle-of-attack dlstribution over complete plan form.

?/ o=ah(N(1-})

o=0

b
N
NN

A

(p) Arbitrary angle-of-attack distribution confined to a strip.

- Figure TT7.- Airfoils with supersonic leading edges and trailing edges per-
pendicular to the free-stream direction.
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(a) Arbitrary sngle-of-attack distribution.

>y

(b) Arbitrary angle-of-attack distribution confined to left side of airfoil.

(c) Arbitrary angle-of-attack distribution confined to right side of airfoil.

i =ah(x)(1-1)

o= 0 ? o=0

(4) Arbitrary angle-of-attack distribution confined to a strip.

Figure 78.- Infinite-aspect-ratio airfoils with arbitrary angle-of-attack
distributions varying linearly with time.
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